905 research outputs found

    Dopamine receptors gene expression in male rat hippocampus after administration of MDMA (Ecstasy) [La ExpresiĂłn GĂ©nica de Receptores de Dopamina en el Hipocampo de Ratas Macho DespuĂ©s de la AdministraciĂłn de MDMA (Éxtasis)]

    Get PDF
    Ecstasy is one of the most popular amusing drugs among young people. Documents indicate some effects of Ecstasy on hippocampus and close relations between dopaminergic functions with reward learning. Therefore, the aim of this study was evaluation of the chronic effects of Ecstasy on memory in male Wistar rats and determination of dopamine receptors' gene expression in hippocampus. Forty adult male Wistar rats randomly distributed in five groups: Control, sham (received 1 ml/kg 0.9 saline) and three experimental groups were: Exp. 1 (2.5 mg/kg), Exp. 2 (5 mg/kg), and Exp. 3 (10 mg/kg) received MDMA intraperitoneally once every 7 days (3 times a day, 3 hours apart) for 4 weeks. Before the first injection animals trained in Shuttle Box memory and tested after the last injection. 24 hours after the final testing, brains of rats were dissected and hippocampus was removed and homogenized. After total RNA extraction and cDNA synthesis, expression of dopamine receptor genes in the hippocampus determined with Real-Time PCR. Our results showed that 2.5 and 5 mg/kg MDMA-treated groups had memory impairment. Also we found that MDMA increased the mRNA expression of dopamine receptors in hippocampus and the highest increase found in dopamine D1 receptors in the 5 mg/kg experimental group. We concluded that low doses of Ecstasy could increase Dopamine takers gene expression in hippocampus and disorder avoidance memory. But in high doses the increase in Dopamine takers gene expression was not as much as that in low doses and avoidance memory disorder was not observed. © 2015, Universidad de la Frontera. All rights reserved

    Anaphoric markers in Indonesian texts

    Get PDF

    Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials

    Get PDF
    We demonstrate that under certain conditions, fractional Talbot revivals can occur in heterostructures of composite metamaterials, such as multilayer positive and negative index media, metallodielectric stacks, and one-dimensional dielectric photonic crystals. Most importantly, without using the paraxial approximation we obtain Talbot images for the feature sizes of transverse patterns smaller than the illumination wavelength. A general expression for the Talbot distance in such structures is derived, and the conditions favorable for observing Talbot effects in layered heterostructures is discussed.Comment: To be published in Phys. Rev.

    Viscous damping of r-modes: Large amplitude saturation

    Full text link
    We analyze the viscous damping of r-mode oscillations of compact stars, taking into account non-linear viscous effects in the large-amplitude regime. The qualitatively different cases of hadronic stars, strange quark stars, and hybrid stars are studied. We calculate the viscous damping times of r-modes, obtaining numerical results and also general approximate analytic expressions that explicitly exhibit the dependence on the parameters that are relevant for a future spindown evolution calculation. The strongly enhanced damping of large amplitude oscillations leads to damping times that are considerably lower than those obtained when the amplitude dependence of the viscosity is neglected. Consequently, large-amplitude viscous damping competes with the gravitational instability at all physical frequencies and could stop the r-mode growth in case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude, version to be published in PR

    Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    Full text link
    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements

    Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems

    Full text link
    Traditionally, chaotic systems are built on the domain of infinite precision in mathematics. However, the quantization is inevitable for any digital devices, which causes dynamical degradation. To cope with this problem, many methods were proposed, such as perturbing chaotic states and cascading multiple chaotic systems. This paper aims at developing a novel methodology to design the higher-dimensional digital chaotic systems (HDDCS) in the domain of finite precision. The proposed system is based on the chaos generation strategy controlled by random sequences. It is proven to satisfy the Devaney's definition of chaos. Also, we calculate the Lyapunov exponents for HDDCS. The application of HDDCS in image encryption is demonstrated via FPGA platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.Comment: 12 page

    The changes in fractal dimension after a maximal exertion in swimming

    Get PDF
    Quite often linear variables are not sensitive enough to explain the changes in the motor behavior of elite athletes. So, non-linear variables should be selected. The aim was to compare the fractal dimension before and after a maximal bout swimming front-crawl. Twenty-four subjects performed an all-out 100m trial swimming front-crawl. Immediately before (Pre-test) and after the trial (Post-test) a speed-meter cable was attached to the swimmer’s waist to measure the hip speed from which fractal dimension was derived. The fractal dimension showed a significant decrease with a moderate effect size between pre- and post-tests. Twenty-one out of 24 swimmers decreased the fractal dimension. As a conclusion, there is a decrease in the fractal dimension and hence in the swimming behavior complexity being under fatigue after a maximal trial.This research was funded by the grant NIE AcRF 11/13 TB.info:eu-repo/semantics/publishedVersio

    Changes in classical kinematics and non‐linear parameters after a maximal 100‐m front‐crawl bout

    Get PDF
    In a linear system there is proportionality between input and output. Under this framework it is expected that the amount of change in sports performance must be proportional to variations in the inputs.info:eu-repo/semantics/publishedVersio

    Changes in classical kinematics and non-linear parameters after a maximal 100-m front-crawl bout

    Get PDF
    In a linear system there is proportionality between input and output. Under this framework it is expected that the amount of change in sports performance must be proportional to variations in the inputs. However, as far as elite performance goes, this is not a straightforward assumption. Sometimes the variables selected are not sensitive enough. Hence, there is the need of having non-linear concepts underpinning such analysis. The aim was to compare classical kinematics and non-linear parameters after a maximal 100-m front-crawl bout. Twenty-four subjects (12 males and 12 females; 22.38±1.68-y) were invited to perform a 100-m freestyle race at maximal pace. Before (pre-test, i.e. rested) and immediately after (post-test, i.e. under fatigue) the maximal bout, they performed two maximal 25m swims at freestyle with push-off start. A speedo-meter cord (Swim speedo-meter, Swimsportec, Hildesheim, Germany) was attached to the swimmer’s hip (Barbosa et al., 2015) in the two 25m trials collecting the instantaneous speed. It was computed the speed fluctuation (dv; Barbosa et al., 2015), approximate entropy (ApEn; Barbosa et al., 2015) and fractal dimension (FD; Higuchi, 1988). Repeated measures ANOVAs (pre-test vs. post-test; P≀0.05), effect sizes (eta squared) and 95% of confidence intervals (95CI) were computed. The speed was 1.44±0.24 and 1.28±0.23m/s in the pre- and post/test, respectively (F=55.136, P<0.001)info:eu-repo/semantics/publishedVersio

    The changes in classical and nonlinear parameters after a maximal bout to elicit fatigue in competitive swimming

    Get PDF
    The aim was to assess the effect of fatigue on linear and nonlinear parameters in swimming. Twenty-four fitness-oriented swimmers performed a maximal bout of 100m at front-crawl to elicit fatigue. Before (pre-) and immediately after (post-test) the bout, participants swam an allout 25m to derive the speed fluctuation (dv), approximate entropy (ApEn) and fractal dimension (FD) from the speed-time series collected by a speedo-meter. Swim speed was 10.85% slower in the post-test than in the pre-test (p < .001, η2=0.72). There was an effect of the fatigue on the dv with a moderate effect size. The dv increased shifting the 95CI band from 0.116–0.134 to 0.140–0.161. The ApEn showed non-significant variations between the pre- and post-test having the 95CI of pre- and post-test overlapped (pre: 0.659–0.700; post: 0.641–0.682). The FD showed as well a significant variation (the 95CI moved from 1.954–1.965 to 1.933–1.951). It can be concluded that in swimming there are changes in classical and nonlinear parameters under fatigue.This research was funded by the NIE AcRF grant (RI 11/13 TB)info:eu-repo/semantics/acceptedVersio
    • 

    corecore